1) a) Find the slope (dy/dx) of the curve $r=2-\sin 2 \theta a t 0=\frac{\pi}{4}$.
(b) Find the equation of the tangent line of the curve $r=2-\sin 2 \theta$ at $0=\frac{\pi}{4}$.
(c) Find $\frac{d r}{d \theta}$ for curve $r=2-\sin 2 \theta$ and evaluate it at $\theta=\frac{\pi}{4}$. Then interpret what the value of $\frac{d r}{d \theta}$ means in terms of the movement of the particle. Show the work that leads to your answer.
d) A particle moves along $r=2-\sin 2 \theta$ so at time t, seconds $\theta=\mathbf{t}^{2}$, Find the time on the interval $0 \leq t \leq 1$ fo which the paricle's \mathbf{x}-coordinate is $\mathbf{1}$.
e) For the partice described in part (d,) find the position vector in terms of t.
f) Using the position found in part (e), find the velocity vector at $t=2$ seconds.
