Name:

1) a) Find the slope (dy/dx) of the curve $\mathbf{r} = \mathbf{2} - \sin \mathbf{2}\theta$ at $\theta = \frac{\pi}{4}$.

(b) Find the equation of the tangent line of the curve $\mathbf{r} = \mathbf{2} - \sin \mathbf{2}\theta$ at $\theta = \frac{\pi}{4}$.

(c) Find $\frac{d\mathbf{r}}{d\theta}$ for curve $\mathbf{r} = \mathbf{2} - \sin \mathbf{2}\theta$ and evaluate it at $\theta = \frac{\pi}{4}$. Then interpret what the value of $\frac{d\mathbf{r}}{d\theta}$ means in terms of the movement of the particle. Show the work that leads to your answer.

d) A particle moves along $r = 2 - \sin 2\theta$ so at time t, seconds $\theta = t^2$, Find the time on the interval $0 \le t \le 1$ fo which the particle's x-coordinate is 1.

'

e) For the partice described in part (d,) find the position vector in terms of t.

f) Using the position found in part (e), find the velocity vector at t = 2 seconds.